

# DEVELOPMENT AND VALIDATION OF ON-FARM SAMPLING PROTOCOLS FOR COLLECTION OF MARKETING (QUALITY) SAMPLES AT HARVEST

APRIL 2003

Price £4.00

# **PROJECT REPORT NO. 301**

# DEVELOPMENT AND VALIDATION OF ON-FARM SAMPLING PROTOCOLS FOR COLLECTION OF MARKETING (QUALITY) SAMPLES AT HARVEST

by

# J KNIGHT<sup>1</sup>, R WILKIN<sup>2</sup> and J RIVETT<sup>1</sup>

# <sup>1</sup> Department of Environmental Science and Technology, Renewable Resources Assessment Group, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY

<sup>2</sup>Universal Cereal Services, 39 Denham Lane, Chalfont St Peter, Gerrards Cross, Buckinghamshire SL9 0EP

This is the final report of a 6-month project which started in July 2003 with a grant of £19,799 from HGCA (Project No. 2761).

The Home-Grown Cereals Authority (HGCA) has provided funding for this project but has not conducted the research or written this report. While the authors have worked on the best information available to them, neither HGCA nor the authors shall in any event be liable for any loss, damage or injury howsoever suffered directly or indirectly in relation to the report or the research on which it is based.

Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended nor is any criticism implied of other alternative, but unnamed products.

# Contents

| Contents                   | 1  |
|----------------------------|----|
| Abstract                   | 2  |
| Programme of work:         | 4  |
| Constraints on the project | 4  |
| Methodology                | 4  |
| Discussion                 | 12 |
| Recommendations            | 15 |
| Acknowledgements           | 16 |
| Appendix 1                 | 17 |
| Appendix 2                 | 18 |
| Appendix 3                 | 20 |
| Appendix 4                 | 22 |

# Abstract

The aim of this project was to develop a limited set of protocols for sampling grain to measure quality characteristics. The protocols were tested to establish the variance attached to each quality measurement to enable users to understand the probability of a sample proving to represent a grain lot for parameters measured.

Protocols laying out sampling instructions for grain coming into store directly and after cleaning or high temperature drying were developed in conjunction with input from an expert panel drawn from the grain industry both in the UK and overseas.

Testing of protocols took place during the 2002 harvest at 16 farms from Kent to Aberdeenshire to try to incorporate geographic variability and differing conditions. Samples were taken to assess the variation between and within trailers (using spear sampling, pelican samplers and scoop sampling) and the impacts of cleaning and drying on sample quality. The performance of composite samples versus a series of single samples was also examined.

Results indicated significant variation between trailers but statistically insignificant variation within trailers. There were no major differences between the sampling methods although spear sampling tended to result in increased specific weight. Composite samples were adequate for quality analysis with little difference between the single and composite sample results.

Drying and cleaning resulted in reduced moisture content and fine material. However, the associated handling tended to increase specific weight and some other characteristics underwent significant change. Samples for quality assessment should therefore be taken after, rather than before, drying.

Grain is inherently variable as it comes off the field and requires careful sampling. However, single samples from each trailer provide a practical method that gives an acceptable indication of grain quality.

# Background

This research submission was made at the request of HGCA in response to the Treasury funding secured to undertake a two-year programme to improve and standardise grain sampling and analysis across the UK cereals industry. The first phase of the programme is to develop and validate protocols that are suitable for collecting samples of grain on UK farms at harvest time. The second part is to train farmers in using these sampling techniques to use at or shortly after harvest to collect samples for marketing purposes

Previous practical investigations of sampling grain have suggested that the methods and equipment used may influence the sample that is collected (HGCA Project Reports No. 34 & 79). A more recent study collected data concerning the equipment and methods currently in use on farms and at commercial stores (HGCA Project Report No 118). This showed that there was little standardisation in methods. Since there is no existing experimental data on which to design a sampling scheme it is essential that this information be collected before any attempt to agree on a protocol is made. This research was aimed at developing a limited set of protocols for testing and establishing the variance attached to each of the quality measurements thus enabling users to understand the probability of a sample providing an representative value for a parcel of grain. Without this information any protocol will be fundamentally flawed, open to dispute and of little value.

The provision of a reliable and universally acceptable sampling methodology will be a major step forward in this area.

# **Programme of work:**

# i) Overall aim

To develop and deliver a reliable, validated sampling protocol acceptable to the whole industry for use on farm at or around harvest to provide representative marketing (quality) samples.

# ii) Specific objectives:

To prepare and validate practical sampling protocols for farmers to use for collecting representative marketing (quality) samples at harvest in the following situations providing it is safe to do so:

- 1. During intake to a farm store
- 2. Off the (high temperature) dryer into a farm store

# **Constraints on the project**

The project was commissioned and designed over a very short period. An essential component was to consult widely on the basic sampling requirements and the make-up of the protocols before any practical work started.

As a result the time available to do the sampling was reduced and the majority of the barley harvest was missed. Only a single set of data using oats was collected but this was of limited value because of limitations with the analytical equipment. Whilst the few results that were obtained for barley indicate that the heterogeneity is similar to wheat this cannot be confirmed and no assumptions can be made about sampling oats. The sampling that was done was under "field" conditions which meant that many factors were uncontrolled; it would be prudent to repeat some of the sampling under more controlled conditions to ensure that the variation was attributable to the factors identified within this report.

## Methodology

The development of the protocols was split into two phases. The first phase was to draft protocols and circulate these widely for comment and the second phase was to test these under field conditions.

## **Drafting the protocol**

The protocols were drafted using the expertise of the researchers and the incorporation of information from previous publications. The publications included both British and International standards (BS4510, derived from International Standard, IS950) although these are both now withdrawn. Considerable reference was made to existing "unofficial" trade protocols but the variation between these meant that no one document could be used in its entirety. The draft protocols were circulated to the expert group (Appendix 1) and then amended in the light of comments to ensure that all aspects relating to practical operation and safety were properly addressed. This resulted in final protocols that were used as the basis for the sampling experiments and these are given in full (Appendices 2 & 3).

## On farm, ex-combine sampling

The purpose of the on-farm, ex-combine sampling exercise was to validate the sampling protocols and to test a variety of methods for taking the sample. In practice all grain was delivered from the combine to the store in trailers and these were used a standard delivery unit. Different sampling regimes were used to assess the degree of variation within trailers and between trailers. Samples were collected with a pelican sampler (figure 1) or scoop (a 1 litre plastic jug) for sampling a flow of grain

and a grain spear to sample a heap of grain produced after a trailer had tipped. In an attempt to include differences due to geographic variation samples were taken from farms distributed over England and Scotland. A total of 16 farms were used, although whilst geographically separate, some of these were operated by the same growers. Details of the farm locations are given in Table 1:

| Farm number     | Commodity        | Farm Location   | Date of sampling   |
|-----------------|------------------|-----------------|--------------------|
| 1               | Wheat and barley | N. Lincolnshire | Early August 02    |
| 2               | Barley           | N. Lincolnshire | Early August 02    |
| 3               | Wheat            | Kent            | Early August 02    |
| 4               | Wheat            | N. Lincolnshire | Mid August 02      |
| 5               | Wheat            | N. Lincolnshire | Mid August 02      |
| 6               | Barley           | Yorkshire       | Mid August 02      |
| 7               | Wheat            | Yorkshire       | Late August 02     |
| 8               | Wheat            | Yorkshire       | Late August 02     |
| 9               | Barley           | Perthshire      | Late September 02  |
| 10              | Wheat            | Perthshire      | Late September 02  |
| 1A*             | Wheat            | N. Lincolnshire | Late August 02     |
| 1A + heap*      | Wheat            | N. Lincolnshire | Late August 02     |
| 2A*             | Barley           | N. Lincolnshire | Late August 02     |
| 3A Post drying* | Wheat            | Kent            | Late August 02     |
| 7A Post drying* | Wheat            | Yorkshire       | Early September 02 |
| 8A*             | Wheat            | Yorkshire       | Early September 02 |

#### Table 1 List of farms, their location, cereal type, and timing of sampling

\* These farms were revisited to collect different information to the original visit and can be regarded as separate data sets.



Figure 1 Example of "home made" pelican sampler

#### Assessment of samples

Almost all samples were checked for moisture content and temperature using a Protimeter GrainMaster i electrical moisture meter immediately on collection.

More detailed assessments of the properties of each sample were made using a Foss Infratec grain analyser 1241 GA-TWM. This machine measured moisture content, specific weight, protein (in the case of wheat) or nitrogen (in the case of barley) and made an assessment of hardness for wheat. As samples had to be transported to the location of the Infratec, delays of a maximum of 24 hours occurred between the collection and assessment of some samples. In these cases, samples were transported in a cool box to reduce the influence of temperature and moisture changes on the properties of the grain. In addition some samples of wheat were sent to NIAB for assessment of Hagberg falling number and a few samples were sent to a maltings for assessment of malting properties. Unfortunately, no results were ever produced by the maltings.

The level of screenings was also assessed for each sample using a single sieve. This was only a comparative test and not done using standard slotted sieves due to constraints of time. The results simply provide an indication of the variability of the level of screenings or fines that occurs between samples.

Whilst the intention was to obtain the same number of samples for each sampling method and at each farm location this was not always possible due to the sampling taking place on-farm at harvest which resulted in a variety of trailer types and tipping methods. The sampling was done under normal working conditions to ensure that the protocol was indeed practical on the farm.

Sampling was done intensively when trailers were fitted with a grain hatch with many samples being taken from each trailer to ascertain the within trailer variation, samples taken from trailers using only opening tailgates were sampled less intensively since the speed of discharge was such that fewer samples could be taken in the time. These latter samples helped to monitor between trailer variations.

The experiment also looked at:

- The comparability of the quality measurement results from individual samples taken from a trailer or series of trailers with the quality measurement results obtained from a sub-sample taken from a composite of individual samples.
- The effects of drying on the quality of the sample
- The effects of cleaning on the quality of the sample

The details of method and number of samples taken at each location is given in Table 2.

| Sampling method | Trailers | Pelican                 | Scoop                    | Spear                          | Diverter sampler                   |
|-----------------|----------|-------------------------|--------------------------|--------------------------------|------------------------------------|
|                 | sampled  | Number of samples       | Number of samples        | Number of samples              | Number of samples                  |
| Farm 1 Barley   | 2        | 10 from each trailer    | 10 from each trailer     |                                |                                    |
| Farm 1 Wheat    | 9        | 1 from each trailer     |                          | 5 from heap from 3 trailers    |                                    |
| Farm 2 Barley   | 10       | 5 from first trailer    |                          | 5 from heap from first trailer |                                    |
|                 |          | 1 each from 9 trailers  |                          |                                |                                    |
| Farm 2 Wheat    | 4        | 1 from each trailer     |                          |                                |                                    |
| Farm 3 Wheat    | 6        | 5 from first 4 trailers |                          | 5 from first 4 trailer heaps   |                                    |
|                 |          | 1 from trailers 5 & 6   |                          | 1 from trailer heaps 5 & 6     |                                    |
| Farm 3A Wheat   |          |                         |                          |                                | 5 samples pre-drying               |
|                 |          |                         |                          |                                | 5 samples post-drying              |
| Farm 4 Wheat    | 10       | 5 from each trailer     |                          |                                |                                    |
| Farm 5 Wheat    | 5        | 5 from each trailer     |                          |                                |                                    |
| Farm 6 Barley   | 5        | 1 from each trailer     |                          |                                |                                    |
| Farm 7 Wheat    | 6        | 1 from each trailer     |                          |                                | 1 from each trailer pre-cleaning   |
|                 |          |                         |                          |                                | 1 from each trailer post-cleaning  |
| Farm 8 Wheat    | 5        | 1 from each trailer     | 1 from each trailer heap | 1 from each trailer heap       |                                    |
| Farm 8A Wheat   | 6        | 1 from each trailer     | 1 from each trailer heap | 1 from each trailer heap       |                                    |
| Farm 9 Wheat    | 1        | 20 from each trailer    |                          |                                | 20 from batch of grain post-drying |
| Farm 10 Wheat   | 1        | 25 from each trailer    |                          |                                | 25 from batch of grain post-drying |

Table 2 Details of sampling methods used and the number of samples taken at each location,

All samples were taken as described in the sampling methodology of the protocol for each of the pieces of equipment. The moisture content of all samples were taken immediately using the Protimeter moisture meter and then the grain was placed into labelled bags for transport to the laboratory for testing in the Infratec machine. Where appropriate, composite samples were made by combining individual samples after each had had their quality characteristics measured. Sub-samples from the composites were taken after thorough mixing of the samples had taken place. Multiple samples from each composite were taken, each sample being discarded after measurement

#### Within trailer variation

The within trailer variation was measured on 6 occasions using between 5 and 25 sample per trailer depending on the rate at which the trailer was emptied.

#### **Between trailer variation**

The between trailer variation was measured on 11 occasions using both multiple and single samples from each trailer.

## Comparison of pelican and spear sampling

The comparison of results from pelican and spear sampling was measured on 5 occasions using both multiple and single samples from each trailer.

#### Comparison of pelican and scoop

The comparison of results from pelican and scoop sampling was measured on 1 occasion using both multiple samples from each trailer

#### Comparison of single and composite samples

The comparison of results derived from single samples with results obtained from bulked samples was measured on 5 occasions.

## **Effects of cleaning**

The effects of cleaning on quality was measured once

## Effects of drying

The effects of drying on quality was measured four times

A second protocol to cover sampling grain after drying was also developed and validated. This second protocol was essentially the same as the first except for the method of sampling the grain. Grain was either sampled using the same methods as for trailers tipping into store (i.e. scoop, pelican sampler swept across the flow of grain from the conveyor or spout or spear sampling the grain after it was tipped into the bin or onto the floor) or using a diverter sampler if available where a constant stream of grain can be diverted directly into the plastic container used for holding samples allowing the regular collection of sub-samples for moisture and temperature monitoring and the production of a sample for quality testing.

#### Results

Residual maximum likelihood estimation (REML) using R (2002, The R Development Core Team) was used to analyse the results to account for the unbalanced incomplete nature of the data. All the data collected for samples of wheat were combined to detect differences between farms, trailers, and sampling methods. The number of samples for barley was too small for a meaningful analysis. The REML was used to detect which of the random elements of the model (farm, trailer, sampler type and sample number) best described the variance that was seen in the fixed factor (moisture, protein, hardness, specific weight or fines). The REML analysis was run with all random effects and then had effects deleted one by one. The model (i.e. random effects structure) that gave the lowest value for the Akaike's Information Criterion (AIC) indicating the best fit was selected.

The analysis showed that for moisture content, protein DM and hardness *farms* and *trailers* accounted for the significant variance in the model but there was no variation accounted for by *samples within trailers* or *sampling methods*. For specific weight, significant variance in the model was accounted for by *farms* and *sampling method* which could probably be explained by the fact that spear sampling can have a polishing effect of the grain changing its characteristics and therefore specific weight. The results for fines only showed an effect for *farms*. However, the residuals from the fines analysis were highly asymmetric and the result should therefore be treated with great caution.

A small number of samples were sent for testing of Hagberg falling number but were too few to produce a statistically meaningful result.

#### Within trailer variation

The overall analysis showed that there was no *statistically* significant variation within trailers. This is not to say that variation did not occur or that it could make a significant difference to individuals. To illustrate this point Table 3 below shows the "worst case scenario" with the maximum and minimum values obtained in single trailers. The results were recorded in a number of different trailers, i.e. moisture content from one trailer protein DM from another.

| Quality factor               | Range of values   |
|------------------------------|-------------------|
| Protein (DM)                 | 10.0 - 12.0%      |
| Nitrogen (DM)                | 1.7 - 1.8%        |
| Moisture content             | 16.9- 17.9%       |
| Hardness                     | 30.3 - 52.7       |
| Specific weight <sup>1</sup> | 60.8 – 69.5 kg/hl |
| Fines                        | 0.02 - 0.52%      |

# Table 3 Greatest ranges of values recorded in single trailers . The values were not drawn from a single trailer

However, more typical results can be seen in Table 4 that contains the maximum and minimum values from 10 samples from a single trailer of barley and one of wheat.

| Quality factor               | Range of values (barley) | Range of values (wheat) |
|------------------------------|--------------------------|-------------------------|
| Protein (DM)                 | -                        | 13.1 - 13.5%            |
| Nitrogen (DM)                | 2.1 - 2.2%               | -                       |
| Moisture content             | 16.6 - 17.4%             | 21.0 - 21.2%            |
| Hardness                     | -                        | 83.2 - 90.5             |
| Specific weight <sup>1</sup> | 60.5 - 62.7 kg/hl        | 62.5 – 65.1 kg/hl       |
| Fines                        | 0.05 - 0.50%             | 0.03 - 0.11%            |

#### Table 4 Typical variation in values using 10 samples from single trailers of wheat or barley

#### **Between trailer variation**

The overall analysis showed the variation between trailers to be statistically significant and therefore determines the minimum sample unit i.e. each trailer has to be sampled to get a good estimate of the quality of the grain. This variation is evident in Table 5 where two combines were operating in the same field but in different parts.

| Trailer   | Protein, DM | Moisture | Hardness | Specific weight <sup>1</sup> | Fines (%) |
|-----------|-------------|----------|----------|------------------------------|-----------|
| Combine 1 | 9.3         | 14.3     | 42.9     | 74.9                         | 0.06      |
| Combine 2 | 11.8        | 16.3     | 67.1     | 70.6                         | 0.06      |

# Table 5 Differences in quality parameter values recorded from two combines operating int he same field

<sup>&</sup>lt;sup>1</sup> The Infratec instrument had not been calibrated for specific weight and when checked against a calibrated instrument was found to consistently under-read by about 5 units. Thus the results reported here are underestimates of the specific weight of the grain.

# Comparison of pelican and spear sampling

The only statistically significant difference recorded between these two sampling methods for both wheat and barley was for specific weight with spear sampling giving a significantly higher value that the pelican sampler.

|        | Spear mean value,<br>specific weight <sup>1</sup> | Pelican mean value,<br>specific weight | T statistic | Probability | Degrees of<br>freedom |
|--------|---------------------------------------------------|----------------------------------------|-------------|-------------|-----------------------|
| Barley | 62.4                                              | 61.0                                   | -5.07       | < 0.0001    | 17                    |
| Wheat  | 67.7                                              | 66.4                                   | -2.99       | 0.002       | 39                    |

Table 6 Results from the comparison of pelican sampling versus spear sampling

## Comparison of pelican and scoop

The comparison of results from pelican and scoop sampling was only done using barley and revealed no significant differences for any of the qualities that were measured (Figure 2).



Figure 2 Comparison of range and frequency of values obtained for moisture content comparing pelican and scoop sampling

<sup>1</sup> The Infratec instrument had not been calibrated for specific weight and when checked against a calibrated instrument was found to consistently under-read by about 5 units. Thus the results reported here are underestimates of the specific weight of the grain

#### Comparison of single and composite samples

All tests were done on wheat. In general there were no significant differences between the mean result obtained from single samples and composite samples created from those individual ones (Table 7). Of the 5 comparisons examined 2 showed differences for fines, 2 showed differences for hardness and a single sample showed differences for specific weight.

| Farm |                | Protein, DM | Moisture | Hardness | Specific<br>weight <sup>1</sup> | Fines (%) |
|------|----------------|-------------|----------|----------|---------------------------------|-----------|
| 1    | Single mean    | 10.5        | 13.4     | 37.1     | 74.3                            | 0.08      |
|      | Composite mean | 10.5        | 13.4     | 38.6     | 74.5                            | 0.13*     |
| 2    | Single mean    | 10.4        | 14.9     | 54.9     | 73.3                            | 0.04      |
|      | Composite mean | 11.2        | 15.1     | 63.5     | 71.7                            | 0.06      |
| 7    | Single mean    | 10.1        | 12.4     | 55.2     | 76.0                            | 0.12      |
|      | Composite mean | 10.1        | 12.8     | 60.1*    | 75.9                            | 0.08      |
| 8    | Single mean    | 12.2        | 19.6     | 68.1     | 70.5                            | 0.03      |
|      | Composite mean | 12.2        | 19.5     | 66.8     | 70.7                            | 0.02*     |
| 8a   | Single mean    | 13.2        | 18.0     | 64.3     | 66.3                            | 0.04      |
| 1    | Composite mean | 13.2        | 17.9     | 62.7*    | 66.7*                           | 0.03      |

Table 7 Comparison of quality measurement means calculated from single samples against means from composite samples for 5 farms. All samples were wheat (\* shows statistically <sup>1</sup>significant difference see Table 8)

As has already been mentioned the measurement of the fines was problematical and no firm conclusion can be drawn from this although the extra handling and opportunity for fine material to fall out of the grain may be part of the explanation although in one case the composite sample shows a higher level and in the other a lower level of fine material. The reasons for the differences found in the specific weight are not clear although the extra handling involved in the creation of the composite may have altered the specific weight, since the composite recorded a significantly higher value than the single samples. The difference in the hardness values is not readily explicable; one difference is highly significant although this appears to be more due to the small variability than a large difference in the actual values (Table 8).

|                              | Single samples | Composite sample | T statistic | Probability | Degrees of |
|------------------------------|----------------|------------------|-------------|-------------|------------|
|                              | Mean value     | Mean value       |             |             | freedom    |
| Farm 1 - Fines               | 0.08           | 0.13             | -2.60       | 0.01        | 12         |
| Farm 7 -                     | 55.2           | 60.1             | -6.07       | < 0.0001    | 13         |
| Hardness                     |                |                  |             |             |            |
| Farm 8 - Fines               | 0.03           | 0.02             | 2.21        | 0.02        | 20         |
| Farm 8A -                    | 64.3           | 62.7             | 2.27        | 0.02        | 20         |
| Hardness                     |                |                  |             |             |            |
| Farm 8A –                    | 66.3           | 66.7             | -1.83       | 0.04        | 20         |
| Specific Weight <sup>2</sup> |                |                  |             |             |            |

Table 8 Details of statistical differences between single sample values and those obtained from composite samples

 $<sup>^{2}</sup>$  The Infratec instrument had not been calibrated for specific weight and when checked against a calibrated instrument was found to consistently under-read by about 5 units. Thus the results reported here are underestimates of the specific weight of the grain.

# Effects of cleaning

Cleaning significantly affected the values for fines and for specific weight (Table 9). Fines are expected to decrease in value through the action of cleaning and the change in specific weight is probably due to the polishing effect of the cleaning process allowing closer packing of the grain.

|                              | Pre-cleaning<br>Mean value | Post-cleaning<br>Mean value | T statistic | Probability | Degrees of<br>freedom |
|------------------------------|----------------------------|-----------------------------|-------------|-------------|-----------------------|
| Specific weight <sup>1</sup> | 75.5                       | 76.7                        | -7.68       | < 0.0001    | 16                    |
| Fines                        | 0.29                       | 0.22                        | 2.21        | 0.02        | 16                    |

| Table 9 Significant effects o | f cleaning on the quality | parameters for wheat |
|-------------------------------|---------------------------|----------------------|
|-------------------------------|---------------------------|----------------------|

# Effects of drying

Drying was studied on both barley and wheat. For barley there were highly significant changes in moisture content, specific weight and fines but the value for nitrogen was unchanged. Wheat showed highly significant changes in moisture content, specific weight, hardness and protein (DM) but fines were left unchanged (Table 10). It would be expected that moisture content, specific weight, hardness and fines would be altered by the drying process but the highly significant change in protein measured on a dry matter basis would not be expected. It is possible that the high moisture content was outside the calibrated range of the instrument and therefore the first value for protein may be inaccurate. This problem may also have arisen since it is very difficult to take comparable measurements before and after drying since it is no longer possible to recognise specific trailers of grain. However, this is not a serious problem since the recommendation to take samples after drying will cover this particular problem. The table below shows the statistical significance of the changes along with the differences in the mean values.

|                            | Pre-cleaning<br>Mean value | Post-cleaning<br>Mean value | T statistic | Probability | Degrees of<br>freedom |
|----------------------------|----------------------------|-----------------------------|-------------|-------------|-----------------------|
| Barley – Moisture          | 18.5                       | 15.7                        | 39.08       | < 0.0001    | 37                    |
| Barley –Specific<br>weight | 58.2                       | 61.4                        | 24.65       | < 0.0001    | 33                    |
| <b>Barley</b> – Fines      | 0.22                       | 0.04                        | 5.70        | < 0.0001    | 17                    |
| Wheat - Protein            | 13.3                       | 12.8                        | 6.70        | < 0.0001    | 31                    |
| Wheat - Moisture           | 21.1                       | 13.7                        | 155.10      | < 0.0001    | 25                    |
| Wheat – Hardness           | 86.8                       | 71.5                        | 39.20       | < 0.0001    | 47                    |
| Wheat – Specific<br>weight | 64.1                       | 67.7                        | -7.04       | <0.0001     | 27                    |

Table 10 Significant differences in quality parameters for wheat and barley occurring after drying

# Discussion

The main purpose of the experimental work was to investigate the reliability of the sampling methods and the sampling protocol. A number of conclusions can be drawn from these results.

#### Inherent variation in grain

All the results gathered indicate that there is inherent variation in the grain that comes from a field and is significant at the farm and field level and also between trailers. The variation in the quality of grain within in a single trailer was not detected to be statistically different using the methods tested here. However, there was variability and whilst not statistically significant it could be large enough to make the difference between the grain being rejected or accepted. The problem facing the grower, merchant or end-user is to get a reasonable indication of the quality of a batch of grain without expending excess time, and therefore money, in detecting these differences. The experiments here show that a single sample per trailer gives a reasonably reliable estimate of the quality of the grain within a trailer; to take more than a single sample would be impractical and may or may not improve the accuracy of the result. The key point to come out of this work is that grain is not homogeneous and therefore should not be sampled as if it is since this would more than likely result in inaccurate values being measured.

All persons involved in the grain trade should be made aware of the fact that there is a relatively large variation in grain quality and therefore sampling can only ever be indicative of the quality of the grain and never a definitive value. Specifications used for the trading of grain need to acknowledge that this variation exists and criteria should be set to include this variation.

## Effect of changing sampling intensity

To demonstrate the effect of sampling intensity the variability of a batch of grain (wheat) was used to show the margin of error associated with taking a single sample as opposed to taking two samples from a trailer of grain. The diagrams below show the sort of level of variation that was obtained and the effects of taking one or two samples to get a measure of the moisture content for each load. The principles are the same for the other factors measured (protein, specific weight, hardness, fines).

The first diagram shows the range of values that are likely to be obtained from a series of samples of grain coming from a single field. Ten samples were taken from 4 trailers giving a total of 40 samples. The mean and standard deviation were calculated and used to produce a probability distribution curve of the range of moisture contents that may be found.

The blue area is the region that contains samples that are within the value of the mean plus or minus 0.5%, i.e.  $18.45\% \pm 0.5\%$ . This region contains 83.7% of the possible results, that is to say there is a probability of 83.7% that the result will lie within this area or a 14.3% chance (1 in 7 chance) that it is outside. If the tolerance is extended to  $18.45\% \pm 0.7\%$  then 95% of the values will fall within this range, i.e. a 5% chance (1 in 20 chance) that a value for moisture content is 0.7% more or less than the mean, i.e. it lies outside the range 19.15% - 17.75%.



The second diagram shows the impact of taking two samples. The probability of getting a value that is greater than 0.5% (1 in 20) of the mean is only 3.4% and if 0.7% is used then the probability of getting a value outside this range is reduced to 0.05% or one chance in 200.



Given the error associated with measuring moisture content (and the other parameters) it was felt taking a single sample was a simple and reasonably reliable method of estimating the qualities of the grain. It is obviously possible to get greater accuracy with more samples but it was felt that the extra time, effort and storage space for samples would make this unacceptable to the majority of growers.

## Sampling methods

The different sampling methods tested did not appear to show any statistically significant differences for the important quality parameters although spear sampling did serve to increase the specific weight of a sample by the polishing effect that the extra handling had on the grain. The level of fines detected by different sampling methods varied but the fines in the samples were a continual problem and require further work to clarify the situation. No definitive statement can be made about their measurement at this stage. The use of a pelican sampler, a scoop or spear sampling appears to be equally effective and do not give significantly different results for nitrogen, protein, hardness or moisture content values. Thus it would appear possible to sample grain safely and reliably on intake from the combine whatever method is being used to tip the grain.

#### Single versus composite samples

The use of composite samples can save time since the measurement of the sample need not be done immediately for each trailer of grain but the samples can be taken from each trailer, placed in a container, mixed thoroughly and then sampled and the measurements recorded. This reduces the number of sample bags that have to handled and stored and the number of samples for analysis. The results indicate that for most of the measurements the results from composite samples are essentially the same as the average of individual samples. There may be some variation in the value that is obtained for fines between the single samples and the bulk. This can probably be explained by the extra handling of the grain giving greater opportunity for the fines to work their way to the bottom of the sample during handling and mixing if not done very thoroughly. The difference in the specific weight detected is probably the result of the extra handling that has taken place resulting in a polishing of the grain and therefore a higher specific weight. The one record of a difference in hardness is not easily explicable and may have been a rogue result.

#### **Cleaning and drying**

The impacts of cleaning and high temperature drying are largely as expected, with drying causing highly significant changes in specific weight, moisture content and hardness; and cleaning causing significant increases in specific weight and reductions in the level of fines. The change in protein content remains unexplained but none of these findings should be of concern since the recommendation that comes from them is that samples for quality determination should be collected after high temperature drying or cleaning, although obviously samples for the determination of moisture content need to be collected as the grain comes in from the field to determine the necessity for drying.

# Recommendations

A number of recommendations for further work are made.

#### **Barley:**

Constraints at the start of this project meant that it was impossible to start the work until after the majority of the English barley crop had been harvested. Therefore, only limited data were collected. It is recommended that work be done to confirm that the protocols are applicable to barley and that the investigation should concentrate on malting barley.

#### Assessment of screenings:

An arbitrary method of testing for screening/fine material had to be used during this project. It is recommended that more work be done using industry standard methods to confirm the validation of the Protocols. This work should include both wheat and barley but assessments on malting barley should be done using both a simple field assessment and standard testing by the IOB method.

#### Falling number:

A small number of tests of the falling number of some samples were done during this project. These seemed to indicate that the samples were sufficiently representative to give results that were satisfactory and fell within the margin of error of the falling number test method. However, the small number of samples did not allow proper statistical confirmation. It is recommended that a further series of samples are collected and tested for falling number so that a full validation of the protocol can be made.

#### Drying:

## **On-floor drying:**

A large proportion of UK grain is dried and stored on-floor. This work concentrated on sampling such grain as it entered the store and did not consider changes that might occur during the slow drying process. It is recommended that tests be done at on-floor drying stores so that grain is sampled according to the protocol as it enters the store and the grain is re-sampled in a similar manner as the store is emptied. This will allow the effects of slow drying on the quality of the grain as shown by the sampling method to be assessed.

## High temperature drying:

The results obtained during this project confirmed that passing grain through a high-temperature drier had an effect of quality and that it was therefore more appropriate to collect quality assessment samples after drying. However, it also indicated that drying could have some unexpected affects on quality. It is recommended that further work be done to investigate these unexpected effects (changes in protein and specific weight).

# Acknowledgements

The authors of this report wish to acknowledge the valuable assistance given by many sectors of the grain industry with the development of the protocols. We also wish to thank the farmers who allowed us to work on their farms at an extremely busy time of the year.

We also wish to thank Foss Instruments for the loan of the Infratec and the training given in its use. We would also thank Protimeter for the loan of a moisture meter, moisture probe and a temperature probe.

# Appendix 1

# Expert Group details

| Name                | Position                                     | Company                |
|---------------------|----------------------------------------------|------------------------|
| Hurburgh, Charles   | Researcher                                   | Iowa State University  |
| Colville, David     | NFU Cereals Committee member                 | W R Colville & Son     |
| Allison, Sandy      | Farmer                                       | Allison & Sons         |
| Attridge, Stuart    | Trader                                       | Harlow Ag Merchants    |
| Badger, Nick        | Trader                                       | Banks Cargill          |
| Baxter, Denise      | Researcher                                   | BRi                    |
| Booth, Philip       | Grain buyer                                  | Bradshaws of Driffield |
| Cragg, Andrew       | Farmer and Cereals R & D member              | Brooker farms          |
| Errington, John     | Farmer                                       | Herne Manor Farm       |
| Hanger, Mark        | Lab manager                                  | Glencore               |
| Knight, Chris       | Head of Agriculture                          | CCFRA                  |
| Lacey, Graham       | Trader                                       | Centaur Grain          |
| Lamont, Archie      | Trader                                       | Grainfax               |
| Lockey, Nicky       | Lab manager                                  | Banks Cargill          |
| Norfolk, Mike       | Maltster (commercial)                        | Muntons Plc            |
| Norman, Keith       | Technical Director                           | Velcourt               |
| Patrick, Nigel      | Commercial director                          | NRM                    |
| Prevett, Chris      | Chief crops officer                          | Rural Payments Agency  |
| Salmon, Sue         | Head of Cereals                              | CCFRA                  |
| Seed, Debbie        | Grain Services Assistant Manager             | Bedfordia Farms        |
| Stokoe, John        | Independent merchant                         |                        |
| Streatfield, Robert | Independent consultant                       | CS Commodity Solutions |
| Vernon, Stewart     | Cereals R & D member                         | Coatsay Moor Farm      |
| Wildey, Ken         | Researcher                                   | CSL                    |
| Paul Ibbott         | Chief arable advisor                         | NFU England            |
| Randall Warin       | Trade policy manager                         | GAFTA                  |
| Andrew Williams     |                                              | H&SE, Stoneleigh       |
| Meurig Raymond      | Farmer and HGCA board member                 |                        |
| Ward, Simon         | Trader                                       | Centaur Grain          |
| Poole, Richard      | Trader                                       | Centaur Grain          |
| Mcgarel, Alex       | Policy officer, Seeds and Cereals department | UFU                    |
| Murrell, Ivor       | Director                                     | MAGB                   |
| Damian Testa        | Trade policy manager                         | Nabim                  |

#### **Appendix 2**



# Sampling protocol

The aim of taking a sample or series of samples is to give a fair representation of a batch or bulk to allow assessment of quality, value and storage potential. Sampling grain going into store is not a substitute for sampling during storage.

#### 1. Equipment

Keep equipment clean and only use for sampling and storing grain samples.

1.1. Samplers

- Pelican sampler
- 1litre plastic jug
- A sampling spear (a to collect about 750g grain from one or several insertions). Preferably use a multi-aperture spear that can be opened and closed by the operator to collect from several depths at each insertion.

#### 1.2. Containers

- 10 litre or larger plastic drums, boxes or tubs with lids.
- Sample bags of about 1kg capacity which can be effectively sealed and labelled.

Establish a system to relate samples to specific bins of grain or sections of a bulk store. Number bins and paint bay numbers on the walls of floor stores. Indicates these numbers on the site plan.

#### 2. Collecting samples

Collect a sample of about 1kg from the tailgate as trailers tip in the store. If trailer tips through a hatch in the tailgate, a jug or pelican can be used. If the whole tailgate is opened, only use the pelican. It may be safer to collect a sample from the tipped heap with a sample spear.

#### 2.1. Technical details

Sweep a plastic jug or pelican sampler across the flow of grain from the trailer, so as to cut the stream of grain. Remove the jug or pelican as soon as full. Sample in a consistent manner. Avoid the first or last parts of the load.

Sample the grain after tipping by inserting the spear and removing a sample(s), from at least three positions.

Empty the jug, pelican or spear into a plastic container. Check for moisture content and temperature of some grain from each individual sample first, if this container is being used to build up a composite sample. Blend composite samples thoroughly before sub-sampling.

#### 2.2. Testing

Measure the moisture content of each sample to give guidance on intake moisture and the need for drying.

If the meter uses a large, un-ground sample, tip the grain back into the main sample after testing. Measure the temperature of the grain to indicate the need for in-store cooling.

#### 3. Frequency of sampling

#### 3.1. Storage potential

Assess samples from sufficient incoming loads for moisture and temperature to allow proper decisions to be made about drying and cooling. This may mean testing every load as moistures will often change during the day.

#### 3.2. Commercial sample

Produce one composite sample to represent each bin or each identified section or bay within a bulk store.

Start a new composite sample whenever moving to a new part of the store or taking grain from a different field.

Make up at least one composite sample for each 50 tonnes of grain irrespective of bin or bay size.

Samples best representing commercial value are made up from sub-samples taken as every trailer enters the store. Subsampling frequency depends upon the intake variability.

#### 4. Sample handling

Label the container holding the composite sample clearly outside and inside. Make sure that the sample can be related to an identifiable batch of grain in the store (bin or section of a store). Make sure that the labels correspond to the site plan.

Close the container with a lid that will prevent rodent access, stop contamination by dust or other grain and minimise moisture loss.

If grain in the store is moved, amend the site plan and ensure that the sample label still corresponds to the correct batch of grain. Moving the grain may also present an ideal time to re-sample and produce new composite samples.

Store the containers in the grain store under the same conditions as the grain they represent.

#### 4.1. Sample storage

Samples with a moisture content of >14.5% may deteriorate long-term storage; those with high moisture contents will go mouldy. Dry those with moisture content >14% by spreading thinly on a tray in a warm dry room for 24 – 48 hours and label as "dried". Alternatively, samples of wet grain analysis without delay.

#### 5. Extracting commercial samples

Mix the composite sample thoroughly before extracting any samples for buyers

After mixing, tip the grain onto a clean plastic sheet and divide up using a clean board into halves, quarters and eights, until the

correct amount is obtained for the buyer's sample.

Carefully remove all the buyer's sample (about 1kg) from the sheet, including all the fine material and transfer to a plastic bag.

Seal and label the bag.

It is worth measuring the moisture of this sample as, by doing so, as comparison between the farm and merchant's moisture meter will be obtained.

#### 6. Labelling

Label information for composite samples should include::

- Date of collection
- Variety
- Moisture content(s)

Location of grain represented by the sample: e.g. Bin 3, or Shed 1, left bay 2.

Labels on buyer's samples should include:

Farm address and any other identity codes

- Quality scheme membership Number (attach an assurance scheme identity sticker to the sample bag)
- Location of grain represented by the sample (it must be possible for the buyer to be able to identify the location of the batch
  of grain covered by the sample. In some cases this may differ from the farm office address)
- Date of harvest
- Tonnes represented by sample
- Variety
- Moisture content

#### 7. Safety

There are risks associated with the collection of samples. Assess the risks involved with specific tasks and locations, and take steps to minimise them.

Specific risks include:

- working near moving equipment
- conveying equipment augers and elevators must be guarded
- being engulfed by grain never stand or walk on moving grain
- grain dust wear a dust mask
- grain pits must be covered with a protective grill

When handling treated grain, personal protective clothing must be worn, e.g. gloves and masks.

Working at the back of trailers during tipping can be dangerous because of the risk of being hit by the swinging tailgate or by being engulfed by grain. Only approach the rear of the trailer if it safe to do so. Always ensure that the trailer driver knows the sampler is present, especially when the trailer has a hydraulic tailgate.

# **Appendix 3**



Sampling protocol

## - ex-high-temperature drier

The aim of taking a sample or series of samples is to give a fair representation of a batch or bulk to allow assessment of quality, value and storage potential. Sampling grain going into store is not a substitute for sampling during storage.

#### 1. Equipment

Keep equipment clean and only use for sampling and storing grain samples.

- 1.1. Samplers
- Pelican sampler
- 1litre plastic jug
- A sampling spear (a to collect about 750g grain from one or several insertions). Preferably use a multi-aperture spear that
  can be opened and closed by the operator to collect from several depths at each insertion.
- Diverter sampler inserted permanently into drier input and output flows.

#### 1.2. Containers

- 10 litre or larger plastic drums, boxes or tubs with lids.
- Sample bags of about 1kg capacity which can be effectively sealed and labelled.

Establish a system to relate samples to specific bins of grain or sections of a bulk store. Number bins and paint bay numbers on the walls of floor stores. Indicates these numbers on the site plan.

#### 2. Collecting samples

Sample collection site depends upon facilities. Options include drier outflow, conveyor discharge or point of grain discharge into bin or floor store. Use samples collected as grain enters drier to assess drier performance. The best and safest option is a permanent diverter sampler in the drier flow.

#### 2.1. Technical details

Sweep a plastic jug or pelican sampler across the flow of grain from either conveyor or spout, so as to cut the stream of grain. Remove the jug or pelican as soon as full. Sample in a consistent manner.

Sample the grain after tipping by inserting the spear and removing a sample(s), from at least three positions.

Empty the jug, pelican or spear into a plastic container. Check for moisture content and temperature of some grain from each individual sample first, if this container is being used to build up a composite sample. Blend composite samples thoroughly before sub-sampling.

If using a diverter sampler, allow the grain to fall directly into a plastic container. Collect sub-samples at regular intervals and measure moisture content and temperature.

#### 3. Frequency of sampling

Sampling frequency depends on drier type, whether batch or continuous flow.

#### 3.1. Storage potential:

Measure temperature and moisture content of samples regularly. Base sampling frequency on grain moisture content before drying. Sample grain several times if moisture content varies within the bulk pre-drying.

#### 3.2. Commercial sample:

The best samples to represent commercial value compromise many sub-samples taken at relatively short intervals as grain is discharged from the drier.

For batch driers, collect several samples (at least1/t of grain in the drier) as the dried batch is discharged.

Combine samples from several batches into a single composite sample, provided the grain represented by the sample is stored in an identified section of the store.

Produce one composite sample to represent each bin or each identified section or bay within a bulk store.

Start a new composite sample whenever moving to a new part of the store or taking grain from a different field.

Make up at least one composite for each 50 tonnes of grain irrespective of bin or bay size.

#### 4. Sample handling

Label the container holding the composite sample clearly outside and inside. Make sure that the sample can be related to an identifiable batch of grain in the store (bin or section of a store). Make sure that the labels correspond to the site plan.

Close the container with a lid that will prevent rodent access, stop contamination by dust or other grain and minimise moisture loss.

If grain in the store is moved, amend the site plan and ensure that the sample label still corresponds to the correct batch of grain. Moving the grain may also present an ideal time to re-sample and produce new composite samples.

Store the containers in the grain store under the same conditions as the grain they represent.

#### 5. Extracting commercial samples

Mix the composite sample thoroughly before extracting any samples for buyers

After mixing, tip the grain onto a clean plastic sheet and divide up using a clean board into halves, quarters and eights, until the

correct amount is obtained for the buyer's sample.

Carefully remove all the buyer's sample (about 1kg) from the sheet, including all the fine material and transfer to a plastic bag.

Seal and label the bag.

It is worth measuring the moisture of this sample as, by doing so, as comparison between the farm and merchant's moisture meter will be obtained

#### 6. Labelling

Label information for composite samples should include::

- Date of collection
- Variety
- Moisture content(s)
- Location of grain represented by the sample: e.g. Bin 3, or Shed 1, left bay 2.

Labels on buyer's samples should include:

- Farm address and any other identity codes
- Quality scheme membership Number (attach an assurance scheme identity sticker to the sample bag)
- Location of grain represented by the sample (it must be possible for the buyer to be able to identify the location of the batch
  of grain covered by the sample. In some cases this may differ from the farm office address)
- Date of harvestTonnes represented by sample
- Tonnes represented by
   Variety
- Variety
   Moisture content

#### 7. Safety

There are risks associated with the collection of samples. Assess the risks involved with specific tasks and locations, and take steps to minimise them.

Specific risks include:

- working near moving equipment
- conveying equipment augers and elevators must be guarded
- being engulfed by grain never stand or walk on moving grain
- drier exhaust fumes
- grain dust wear a dust mask

When handling treated grain, personal protective clothing must be worn, e.g. gloves and masks.

# Appendix 4

Results from farm sampling

| Farm1 bar  | ley         | Regina  |            |          |           |            |           |
|------------|-------------|---------|------------|----------|-----------|------------|-----------|
| Instrument | Application | Sample_ | ID Nitr.DM | Moisture | Volume we | Protimeter | Fines (%) |
| 12411675   | WB210241    | 1/1/1   | 1.7622     | 16.7249  | 59.9773   | 15.8       | 0.07      |
| 12411675   | WB210241    | 1/1/2   | 1.7472     | 16.697   | 59.9416   | 16.2       | 0.06      |
| 12411675   | WB210241    | 1/1/3   | 1.7771     | 16.8466  | 60.4235   | 16.2       | 0.10      |
| 12411675   | WB210241    | 1/1/4   | 1.7488     | 16.8281  | 60.0487   | 16.1       | 0.08      |
| 12411675   | WB210241    | 1/1/5   | 1.8232     | 16.9042  | 60.1379   | 16.2       | 0.06      |
| 12411675   | WB210241    | 1/1/6   | 1.7777     | 16.6765  | 60.0487   | 16.3       | 0.08      |
| 12411675   | WB210241    | 1/1/7   | 1.7665     | 17.1752  | 60.4056   | 16.3       | 0.16      |
| 12411675   | WB210241    | 1/1/8   | 1.7373     | 16.7048  | 60.1915   | 16.3       | 0.30      |
| 12411675   | WB210241    | 1/1/9   | 1.7282     | 17.5414  | 59.6025   | 16.3       | 0.95      |
| 12411675   | WB210241    | 1/1/10  | 1.765      | 17.2902  | 59.2634   | 16.5       | 0.56      |
| 12411675   | WB210241    | 1/1/11  | 1.8433     | 17.389   | 59.7631   | 15.9       | 0.06      |
| 12411675   | WB210241    | 1/1/12  | 1.7607     | 16.6865  | 60.1736   | 16.0       | 0.05      |
| 12411675   | WB210241    | 1/1/13  | 1.7861     | 16.8397  | 60.0665   | 15.9       | 0.06      |
| 12411675   | WB210241    | 1/1/14  | 1.8013     | 16.5102  | 60.0487   | 16.0       | 0.05      |
| 12411675   | WB210241    | 1/1/15  | 1.7481     | 16.6207  | 60.1736   | 15.8       | 0.07      |
| 12411675   | WB210241    | 1/1/16  | 1.7259     | 17.0224  | 59.9773   | 16.0       | 0.08      |
| 12411675   | WB210241    | 1/1/17  | 1.8248     | 17.3818  | 59.9416   | 16.2       | 0.07      |
| 12411675   | WB210241    | 1/1/18  | 1.7596     | 17.5186  | 59.8345   | 16.0       | 0.19      |
| 12411675   | WB210241    | 1/1/19  | 1.7554     | 17.0143  | 59.0671   | 16.2       | 0.59      |
| 12411675   | WB210241    | 1/1/20  | 1.7616     | 16.7601  | 60.0844   | 16.4       | 1.42      |
| 12411675   | WB210241    | 1/2/1   | 1.7081     | 16.8989  | 60.2093   | 15.7       | 0.09      |
| 12411675   | WB210241    | 1/2/2   | 1.6646     | 16.6117  | 59.6204   | 15.7       | 0.10      |
| 12411675   | WB210241    | 1/2/3   | 1.6746     | 16.7253  | 59.2813   | 15.6       | 0.07      |
| 12411675   | WB210241    | 1/2/4   | 1.7021     | 16.6255  | 59.3884   | 15.7       | 0.06      |
| 12411675   | WB210241    | 1/2/5   | 1.709      | 16.596   | 59.6561   | 15.8       | 0.07      |
| 12411675   | WB210241    | 1/2/6   | 1.7222     | 16.9139  | 59.7631   | 15.7       | 0.11      |
| 12411675   | WB210241    | 1/2/7   | 1.6527     | 16.269   | 59.8881   | 15.0       | 0.05      |
| 12411675   | WB210241    | 1/2/8   | 1.7485     | 16.7253  | 59.7988   | 15.7       | 0.10      |
| 12411675   | WB210241    | 1/2/9   | 1.6753     | 17.0435  | 59.2991   | 15.9       | 0.13      |
| 12411675   | WB210241    | 1/2/10  | 1.7143     | 16.7168  | 59.6204   | 16.1       | 0.09      |
| 12411675   | WB210241    | 1/2/11  | 1.6322     | 16.3476  | 59.9238   | 15.8       | 0.08      |
| 12411675   | WB210241    | 1/2/12  | 1.6326     | 16.2684  | 59.6025   | 15.8       | 0.08      |
| 12411675   | WB210241    | 1/2/13  | 1.6929     | 16.4644  | 59.8345   | 15.8       | 0.07      |
| 12411675   | WB210241    | 1/2/14  | 1.6965     | 16.5622  | 59.7275   | 15.7       | 0.10      |
| 12411675   | WB210241    | 1/2/15  | 1.7241     | 16.4464  | 59.9773   | 15.8       | 0.09      |
| 12411675   | WB210241    | 1/2/16  | 1.6716     | 16.5715  | 59.8345   | 15.9       | 0.11      |
| 12411675   | WB210241    | 1/2/17  | 1.6468     | 16.4314  | 60.0844   | 15.7       | 0.05      |
| 12411675   | WB210241    | 1/2/18  | 1.7529     | 17.0934  | 59.8881   | 16.0       | 0.07      |
| 12411675   | WB210241    | 1/2/19  | 1.6974     | 16.4646  | 60.1915   | 16.2       | 0.07      |
| 12411675   | WB210241    | 1/2/20  | 1.6815     | 16.6964  | 60.0844   | 15.8       | 0.08      |

| Farm 1 Whe   | eat     | Consort        |          |          |               |          |           |
|--------------|---------|----------------|----------|----------|---------------|----------|-----------|
| Application  | Sample_ | ID ProtDM      | Moisture | Hardness | Volume we Pro | otimeter | Fines (%) |
| WH10106C     | 1A/1/1  | 10.3476        | 13.9551  | 31.8666  | 74.9785       | 13.5     | 0.07      |
| WH10106C     | 1A/2/1  | 10.4745        | 13.5965  | 35.3254  | 75.1857       | 13.7     | 0.06      |
| WH10106C     | 1A/3/1  | 10.318         | 13.4637  | 32.4797  | 74.9095       | 13.3     | 0.09      |
| WH10106C     | 1A/4/1  | 10.3369        | 13.3627  | 37.3767  | 74.5125       | 13       | 0.13      |
| WH10106C     | 1A/5/1  | 10.5708        | 13.2716  | 42.5596  | 73.9601       | 12.8     | 0.08      |
| WH10106C     | 1A/6/1  | 10.6741        | 13.1736  | 40.0838  | 74.2708       | 12.6     | 0.08      |
| WH10106C     | 1A/7/1  | 10.649         | 13.2329  | 36.8557  | 73.2697       | 12.7     | 0.07      |
| WH10106C     | 1A/8/1  | 10.723         | 13.1589  | 39.2567  | 74.478        | 12.9     | 0.02      |
| WH10106C     | 1A/9/1  | 10.6545        | 13.3622  | 38.191   | 73.5286       | 12.8     | 0.12      |
| WH10106C     | 1A/C/1  | 10.4662        | 13.3597  | 39.4602  | 74.5125       |          | 0.16      |
| WH10106C     | 1A/C/2  | 2 10.5012      | 13.36    | 39.4535  | 74.5988       |          | 0.1       |
| WH10106C     | 1A/C/3  | 10.5864        | 13.474   | 37.6925  | 74.7369       |          | 0.17      |
| WH10106C     | 1A/C/4  | 10.4956        | 13.4259  | 37.6814  | 74.0464       |          | 0.11      |
| WH10106C     | 1A/C/5  | 5 10.5743      | 13.3915  | 38.596   | 74.6506       |          | 0.1       |
| Yellow cells | are con | nposite sample | e values |          |               |          |           |
| Samples fro  | om heap | <b>)</b>       |          |          |               |          |           |
| Application  | Sample_ | ID ProtDM      | Moisture | Hardness | Volume weight | t        |           |
| WH10106C     | 1A/H/1  | 10.4951        | 13.3131  | 39.8566  | 73.9774       |          |           |
| WH10106C     | 1A/H/2  | 10.757         | 13.3199  | 43.1439  | 73.8738       |          |           |
| WH10106C     | 1A/H/3  | 10.5218        | 13.3299  | 42.1618  | 73.425        |          |           |
| WH10106C     | 1A/H/4  | 10.6545        | 13.3168  | 42.3223  | 74.1845       |          |           |
| WH10106C     | 1A/H/5  | 10.7853        | 13.2914  | 45.8984  | 73.5113       |          |           |

(In black and white version, read 'shaded' for 'yellow')

| Farm 2 Barley Opal |         |          |           |            |           |  |  |
|--------------------|---------|----------|-----------|------------|-----------|--|--|
| Sample_ID N        | Nitr.DM | Moisture | Volume we | Protimeter | Fines (%) |  |  |
| 2/1/1              | 2.0513  | 17.7625  | 61.1552   | 16.4       | 0.20      |  |  |
| 2/1/2              | 2.0397  | 16.8665  | 61.8156   | 16.2       | 0.09      |  |  |
| 2/1/3              | 2.0552  | 17.29    | 60.3164   | 16.7       | 0.06      |  |  |
| 2/1/4              | 2.0029  | 16.9002  | 61.887    | 16.3       | 0.15      |  |  |
| 2/1/5              | 2.1889  | 17.93    | 59.3884   | 17.4       | 0.40      |  |  |
| 2/1/6              | 2.0257  | 17.0344  | 62.4402   | 17.7       | 0.25      |  |  |
| 2/1/7              | 2.0546  | 17.1279  | 62.3688   | 16.7       | 0.20      |  |  |
| 2/1/8              | 2.0984  | 17.0545  | 62.7079   | 16.6       | 0.15      |  |  |
| 2/1/9              | 2.051   | 17.8076  | 62.3688   | 17.0       | 0.51      |  |  |
| 2/1/10             | 2.0697  | 16.9524  | 62.4759   | 16.8       | 0.33      |  |  |
| 2/2/2              | 2.1399  | 16.899   | 61.8156   | 16.7       | 0.26      |  |  |
| 2/2/3              | 2.1027  | 17.3583  | 60.4949   | 16.6       | 0.15      |  |  |
| 2/2/4              | 2.1321  | 16.6441  | 61.6371   | 16.6       | 0.05      |  |  |
| 2/2/5              | 2.0864  | 17.4025  | 60.7626   | 16.7       | 0.21      |  |  |
| 2/2/6              | 2.1335  | 17.0302  | 62.3688   | 16.6       | 0.16      |  |  |
| 2/2/7              | 2.1324  | 17.0721  | 62.1547   | 16.7       | 0.38      |  |  |
| 2/2/8              | 2.1     | 17.0805  | 62.226    | 16.7       | 0.29      |  |  |
| 2/2/9              | 2.1255  | 17.3688  | 62.5651   | 16.9       | 0.50      |  |  |
| 2/2/10             | 2.1452  | 16.8187  | 62.7258   | 16.8       | 0.37      |  |  |

| Farm 2 Wheat | Savannah  |         |          |          |             |           |           |
|--------------|-----------|---------|----------|----------|-------------|-----------|-----------|
| Application  | Sample_ID | ProtDM  | Moisture | Hardness | Volume we P | rotimeter | Fines (%) |
| WH101060     | 2A/1/1    | 9.2898  | 14.2998  | 42.8603  | 74.9095     | 14.1      | 0.06      |
| WH101060     | 2A/2/1    | 11.8469 | 16.2747  | 67.1267  | 70.6459     | 16.7      | 0.06      |
| WH101060     | 2A/3/1    | 11.8396 | 15.048   | 71.0497  | 70.6804     | 15.9      | 0.04      |
| WH101060     | 2A/4/1    | 9.5971  | 14.4784  | 48.0899  | 74.7196     | 14.2      | 0.03      |
| WH101060     | 2A/1/1A   | 9.3386  | 14.3309  | 45.438   | 75.4619     |           |           |
| WH101060     | 2A/C/1    | 11.1633 | 15.1144  | 63.4057  | 72.6482     |           | 0.12      |
| WH101060     | 2A/C/2    | 11.0238 | 15.0818  | 61.4848  | 72.0959     |           | 0.05      |
| WH101060     | 2A/C/3    | 11.177  | 15.0845  | 64.0462  | 71.4227     |           | 0.05      |
| WH101060     | 2A/C/4    | 11.284  | 15.0921  | 65.1906  | 70.2834     |           | 0.06      |
| WH101060     | 2A/C/5    | 11.1221 | 15.0439  | 63.2135  | 72.2167     |           |           |

Yellow cells are composite values (In black and white version, read 'shaded' for 'yellow')

| eat Charger |             |           |         |          |          |            |            |           |
|-------------|-------------|-----------|---------|----------|----------|------------|------------|-----------|
| Instrument  | Application | Sample_ID | ProtDM  | Moisture | Hardness | ume weight | Protimeter | Fines (%) |
| 12411675    | WH101060    | 3/1/1     | 11.8212 | 18.5961  | 52.9745  | 66.5377    | 18.7       | 0.14      |
| 12411675    | WH101060    | 3/1/2     | 11.8789 | 18.4648  | 55.0770  | 67.1936    | 18.7       | 0.04      |
| 12411675    | WH101060    | 3/1/3     | 12.3504 | 18.6021  | 59.0756  | 66.6930    | 18.6       | 0.58      |
| 12411675    | WH101060    | 3/1/4     | 12.7072 | 18.9235  | 58.6743  | 64.4318    | 18.7       | 0.04      |
| 12411675    | WH101060    | 3/1/5     | 12.8680 | 18.8072  | 57.8443  | 65.9508    | 19.0       | 0.06      |
| 12411675    | WH101060    | 3/1/6     | 12.8405 | 18.8615  | 56.7873  | 67.0383    | 18.8       | 0.11      |
| 12411675    | WH101060    | 3/1/7     | 12.8070 | 18.9224  | 59.7500  | 67.1764    | 18.9       | 0.09      |
| 12411675    | WH101060    | 3/1/8     | 12.8101 | 18.8994  | 57.8689  | 67.3145    | 18.3       | 0.07      |
| 12411675    | WH101060    | 3/1/9     | 12.2716 | 18.6927  | 52.0758  | 67.3835    | 18.7       | 0.08      |
| 12411675    | WH101060    | 3/1/10    | 12.6462 | 19.0344  | 59.5837  | 66.8484    | 19.5       | 0.06      |
| 12411675    | WH101060    | 3/1/10    | 12.9844 | 18.7271  | 54.9760  | 60.5825    |            |           |
| 12411675    | WH101060    | 3/2/1     | 13.1111 | 18.8204  | 53.6169  | 60.8242    | 19.0       | 0.44      |
| 12411675    | WH101060    | 3/2/2     | 12.4168 | 18.4742  | 56.3781  | 67.7805    | 18.4       |           |
| 12411675    | WH101060    | 3/2/3     | 12.4923 | 16.8133  | 52.8521  | 69.5239    | 18.5       | 0.14      |
| 12411675    | WH101060    | 3/2/4     | 12.4472 | 18.5998  | 56.6466  | 66.9692    | 18.5       | 0.01      |
| 12411675    | WH101060    | 3/2/5     | 12.2276 | 18.6497  | 51.7847  | 63.7759    | 18.7       | 0.12      |
| 12411675    | WH101060    | 3/2/6     | 12.3576 | 18.5151  | 55.4942  | 68.2293    | 18.7       | 0.11      |
| 12411675    | WH101060    | 3/2/7     | 12.8242 | 18.5699  | 57.3412  | 67.9877    | 18.4       | 0.07      |
| 12411675    | WH101060    | 3/2/8     | 12.8273 | 18.5537  | 59.3171  | 68.0740    | 18.6       | 0.10      |
| 12411675    | WH101060    | 3/2/9     | 12.6174 | 18.5322  | 57.6622  | 68.1948    | 18.6       | 0.10      |
| 12411675    | WH101060    | 3/2/10    | 12.5668 | 18.7377  | 52.9529  | 67.8841    | 18.9       | 0.05      |
| 12411675    | WH101060    | 3/3/1     | 12.2204 | 18.3453  | 50.2056  | 67.2800    | 18.1       | 0.07      |
| 12411675    | WH101060    | 3/3/2     | 12.4449 | 18.4581  | 53.0238  | 65.0532    | 18.3       | 0.02      |
| 12411675    | WH101060    | 3/3/3     | 12.3461 | 18.4351  | 55.2916  | 66.4514    | 18.4       | 0.02      |
| 12411675    | WH101060    | 3/3/4     | 11.5256 | 18.1721  | 44.3203  | 67.3835    | 17.8       | 0.13      |
| 12411675    | WH101060    | 3/3/5     | 11.8203 | 18.2815  | 46.7327  | 67.2800    | 18.7       | 0.10      |
| 12411675    | WH101060    | 3/3/6     | 11.9839 | 18.3935  | 51.4429  | 67.2800    | 18.3       | 0.07      |
| 12411675    | WH101060    | 3/3/7     | 12.1171 | 18.3721  | 50.8281  | 67.5734    | 19.2       | 0.08      |
| 12411675    | WH101060    | 3/3/8     | 12.0972 | 18.3751  | 51.1371  | 68.4192    | 18.7       | 0.08      |
| 12411675    | WH101060    | 3/3/9     | 12.2587 | 18.3674  | 52.4408  | 68.1603    | 18.2       | 0.09      |
| 12411675    | WH101060    | 3/3/10    | 12.0160 | 18.4121  | 50.1453  | 68.4019    | 18.1       | 0.07      |
| 12411675    | WH101060    | 3/3/8     | 12.3237 | 18.4563  | 51.5760  | 68.2293    | 18.1       | 0.52      |
| 12411675    | WH101060    | 3/4/1     | 10.0519 | 18.2825  | 30.2817  | 65.4675    | 17.8       | 0.06      |
| 12411675    | WH101060    | 3/4/2     | 11.9571 | 18.0819  | 51.0113  | 68.1430    | 18.3       | 0.03      |
| 12411675    | WH101060    | 3/4/3     | 12.0142 | 18.0816  | 52.6922  | 68.7299    | 18.3       | 0.26      |
| 12411675    | WH101060    | 3/4/4     | 10.7728 | 18.2633  | 37.0879  | 67.3317    | 17.8       | 0.23      |
| 12411675    | WH101060    | 3/4/5     | 10.4772 | 18.2073  | 35.7284  | 65.9335    | 18.0       | 0.16      |
| 12411675    | WH101060    | 3/4/6     | 11.2322 | 18.2017  | 42.8633  | 68.2984    | 17.8       | 0.25      |
| 12411675    | WH101060    | 3/4/7     | 10.9382 | 18.2714  | 39.6547  | 67.5216    | 18.4       | 0.24      |
| 12411675    | WH101060    | 3/4/8     | 10.4958 | 18.2196  | 34.5473  | 67.4353    | 18.0       | 0.19      |
| 12411675    | WH101060    | 3/4/9     | 10.8520 | 18.1780  | 37.1240  | 67.6942    | 18.3       | 0.19      |
| 12411675    | WH101060    | 3/4/10    | 11.1403 | 18.4267  | 41.8035  | 67.1419    |            |           |

| Farm 3a Wh  | eat Claire | pre and pos | st drying |           |
|-------------|------------|-------------|-----------|-----------|
| Sample_ID F | ProtDM     | Moisture    | Hardness  | Volume we |
|             | 40 5400    | 40.0500     |           | 00 45 40  |
| 3A/PDC/1    | 12.5438    | 16.8533     | 55.8563   | 69.4549   |
| 3A/PDC/2    | 12.5058    | 16.8043     | 56.6455   | 68.5228   |
| 3A/PDC/3    | 12.5405    | 16.9065     | 56.8474   | 68.2638   |
| 3A/PDC/4    | 12.3938    | 16.8164     | 53.2451   | 68.3847   |
| 3A/PDC/5    | 12.5763    | 16.8913     | 56.6584   | 68.8335   |
|             |            |             |           |           |
| 3A/ADC/1    | 12.7369    | 14.4213     | 46.0622   | 69.9209   |
| 3A/ADC/2    | 12.7739    | 14.5871     | 45.5199   | 69.6793   |
| 3A/ADC/3    | 12.818     | 14.4192     | 45.6441   | 69.2823   |
| 3A/ADC/4    | 12.4768    | 14.4236     | 45.1876   | 69.2132   |
| 3A/ADC/5    | 12.5272    | 14.5646     | 44.7745   | 69.7311   |
|             |            |             |           |           |
| 3A/H/1      | 12.4382    | 14.6844     | 44.9415   | 70.456    |
| 3A/H/2      | 12.5776    | 14.4888     | 46.6519   | 70.3697   |
| 3A/H/3      | 12.4544    | 14.7457     | 50.7845   | 70.8013   |
| 3A/H/4      | 12.4706    | 14.3862     | 47.9214   | 70.5424   |
| 3A/H/5      | 12.4005    | 14.4993     | 47.1359   | 70.9911   |
| 3A/C/1      | 12.4802    | 14.4546     | 47.5698   | 70.059    |

| Farm 4 Wheat Savannal | ۱ |
|-----------------------|---|
|-----------------------|---|

| Sample | ID ProtDM | Moisture | Hardness | Volume we | Fines (%) |
|--------|-----------|----------|----------|-----------|-----------|
| 4/1/1  | 9.4247    | 17.1013  | 44.0857  | 72.9589   | 0.11      |
| 4/1/2  | 9.4295    | 17.0459  | 44.9483  | 72.9244   | 0.12      |
| 4/1/3  | 9.3634    | 17.1651  | 41.5594  | 72.8899   | 0.18      |
| 4/1/4  | 9.1282    | 17.2549  | 41.5754  | 72.1131   | 0.13      |
| 4/1/5  | 9.2604    | 17.1483  | 43.3469  | 72.8899   | 0.23      |
| 4/4/1  | 9.6382    | 16.5948  | 50.0901  | 72.8554   | 0.05      |
| 4/4/2  | 9.6413    | 16.5217  | 48.7683  | 72.5101   | 0.07      |
| 4/4/3  | 9.5845    | 16.7693  | 50.7672  | 72.8726   | 0.10      |
| 4/4/4  | 9.4847    | 16.7023  | 46.1648  | 73.0453   | 0.06      |
| 4/4/5  | 9.7319    | 16.8451  | 49.5328  | 72.9762   | 0.12      |
| 4/2/1  | 9.2253    | 17.2477  | 41.9138  | 72.8036   | 0.06      |
| 4/2/2  | 9.3277    | 17.3075  | 42.7682  | 72.7173   | 0.07      |
| 4/2/3  | 9.7228    | 17.0721  | 44.4546  | 73.0453   | 0.07      |
| 4/2/4  | 9.6905    | 17.0475  | 47.0277  | 73.6149   | 0.17      |
| 4/2/5  | 9.6778    | 16.985   | 42.6136  | 72.9417   | 0.12      |
| 4/3/1  | 9.2018    | 16.986   | 44.6848  | 73.4768   | 0.10      |
| 4/3/2  | 9.1191    | 17.0074  | 43.7927  | 73.1143   | 0.07      |
| 4/3/3  | 9.2893    | 17.0693  | 44.8925  | 72.9589   | 0.07      |
| 4/3/4  | 9.3909    | 17.0339  | 47.4523  | 73.0625   | 0.07      |
| 4/3/5  | 9.1232    | 17.3666  | 45.6764  | 73.4078   | 0.07      |
| 4/5/1  | 9.3012    | 16.9971  | 42.9356  | 73.0107   | 0.07      |
| 4/5/2  | 8.9357    | 17.0797  | 42.3656  | 73.0798   | 0.05      |
| 4/5/3  | 8.8844    | 17.1708  | 42.2259  | 73.5804   | 0.07      |
| 4/5/4  | 8.8582    | 17.184   | 44.1778  | 72.7173   | 0.37      |
| 4/5/5  | 9.2081    | 17.0335  | 47.3038  | 72.7      | 0.17      |
| 4/6/1  | 9.5557    | 16.9221  | 47.3633  | 73.6839   | 0.10      |
| 4/6/2  | 9.4176    | 16.9424  | 42.718   | 73.6494   | 0.06      |
| 4/6/3  | 9.3789    | 16.8448  | 45.7463  | 73.4078   | 0.05      |
| 4/6/4  | 9.6369    | 16.8743  | 50.8171  | 73.6149   | 0.08      |
| 4/6/5  | 9.6092    | 17.0725  | 47.5853  | 73.3387   | 0.11      |
| 4/7/1  | 9.3348    | 16.9025  | 45.3982  | 73.8393   | 0.01      |
| 4/7/2  | 8.7993    | 16.966   | 40.5545  | 72.2685   | 0.09      |
| 4/7/3  | 9.0282    | 16.978   | 41.0022  | 72.9762   | 0.09      |
| 4/7/4  | 9.2483    | 17.0457  | 44.0746  | 73.0107   | 0.08      |
| 4/7/5  | 9.1075    | 17.048   | 45.1023  | 72.8036   | 0.09      |
| 4/8/1  | 9.2501    | 17.1362  | 40.4641  | 74.0464   | 0.14      |
| 4/8/2  | 9.3566    | 17.2066  | 48.9186  | 73.753    | 0.09      |
| 4/8/3  | 9.6125    | 16.7633  | 48.7404  | 73.7702   | 0.04      |
| 4/8/5  | 9.8157    | 16.4992  | 51.0591  | 73.6149   | 0.05      |
| 4/9/1  | 9.5581    | 16.6032  | 50.3552  | 73.5631   | 0.06      |
| 4/9/2  | 9.8801    | 16.3957  | 50.3124  | 73.8738   | 0.09      |
| 4/9/3  | 9.7775    | 16.4692  | 50.84    | 73.9601   | 0.11      |
| 4/9/4  | 9.9064    | 16.386   | 50.773   | 74.0464   | 0.10      |
| 4/9/3  | 9.757     | 16.58    | 51.1504  | 74.2536   | 0.19      |
| 4/9/5  | 9.808     | 16.7667  | 45.195   | 73.822    | 0.11      |
| 4/10/1 | 9.768     | 16.1993  | 52.0311  | 73.6149   | 0.12      |
| 4/10/2 | 10.0606   | 16.501   | 52.7528  | 73.4941   | 0.21      |
| 4/10/3 | 9.7803    | 16.4432  | 51.4707  | 73.3387   | 0.16      |
| 4/10/4 | 9.9049    | 16.2464  | 52.5918  | 73.3905   | 0.10      |
| 4/10/5 | 10.0927   | 16.4092  | 55.0477  | 73.6839   |           |

| Farm 5 wheat      |             |             |          |          |           |            |           |
|-------------------|-------------|-------------|----------|----------|-----------|------------|-----------|
| Instrument Applic | ation Sampl | e_ID ProtDM | Moisture | Hardness | Volume we | Protimeter | Fines (%) |
| 12411675 WH10     | 1060 5/1/1  | 12.2771     | 16.1829  | 67.3325  | 72.5274   | 16.1       | 0.12      |
| 12411675 WH10     | 1060 5/1/2  | 12.1523     | 16.1293  | 64.1076  | 72.8726   | 15.9       | 0.10      |
| 12411675 WH10     | 1060 5/1/3  | 12.1516     | 16.2024  | 69.1799  | 73.3905   | 16.0       | 0.08      |
| 12411675 WH10     | 1060 5/1/4  | 12.1716     | 16.2571  | 68.0094  | 73.6321   | 15.8       | 0.08      |
| 12411675 WH10     | 1060 5/1/5  | 12.2273     | 16.2969  | 67.0051  | 73.5459   | 16.1       | 0.10      |
| 12411675 WH10     | 1060 5/2/1  | 10.8361     | 15.8451  | 56.3569  | 72.3375   | 15.2       | 0.10      |
| 12411675 WH10     | 1060 5/2/2  | 11.0316     | 15.7864  | 56.4032  | 72.4929   | 15.1       | 0.10      |
| 12411675 WH10     | 1060 5/2/3  | 10.9062     | 15.9727  | 58.3064  | 72.8209   | 15.1       | 0.09      |
| 12411675 WH10     | 1060 5/2/4  | 11.4026     | 16.0531  | 62.5934  | 73.2869   | 15.8       | 0.11      |
| 12411675 WH10     | 1060 5/2/5  | 11.47       | 15.9329  | 62.5352  | 72.9417   | 15.6       | 0.10      |
| 12411675 WH10     | 1060 5/3/1  | 12.2799     | 15.5689  | 67.0944  | 72.7346   | 14.8       | 0.07      |
| 12411675 WH10     | 1060 5/3/2  | 11.9887     | 15.6374  | 65.1149  | 72.7      | 15.0       | 0.16      |
| 12411675 WH10     | 1060 5/3/3  | 12.0336     | 15.8545  | 67.5735  | 74.0464   | 15.5       | 0.05      |
| 12411675 WH10     | 1060 5/3/4  | 11.9541     | 15.669   | 65.8546  | 73.2351   | 15.1       | 0.05      |
| 12411675 WH10     | 1060 5/3/5  | 12.1852     | 15.5886  | 66.8555  | 72.7      | 15.5       | 0.13      |
|                   |             |             |          |          |           |            |           |

| Farm 6 barley |             |           |           |          |           |            |           |  |  |
|---------------|-------------|-----------|-----------|----------|-----------|------------|-----------|--|--|
| Instrument    | Application | Sample_ID | ) Nitr.DM | Moisture | Volume we | Protimeter | Fines (%) |  |  |
| 12411675      | EO210240    | 6/2/1     | 1.3913    | 16.7056  | 66.438    | 16.6       | 0.16      |  |  |
| 12411675      | EO210240    | 6/3/1     | 1.2893    | 15.7645  | 67.4017   | 16.2       | 0.17      |  |  |
| 12411675      | EO210240    | 6/4/1     | 1.6243    | 16.9923  | 65.4742   | 15.5       | 0.20      |  |  |
| 12411675      | EO210240    | 6/5/1     | 1.6113    | 16.1197  | 66.0989   | 16.5       | 0.31      |  |  |
| 12411675      | EO210240    | 6/6/1     | 1.3655    | 15.1302  | 67.0091   | 16.2       | 0.23      |  |  |

#### Farm 7 Wheat Savannah Pre-drving

| i io ai jii | .9        |          |          |           |            |           |
|-------------|-----------|----------|----------|-----------|------------|-----------|
| Sample_     | ID ProtDM | Moisture | Hardness | Volume we | Protimeter | Fines (%) |
| 7/1/1       | 10.5633   | 16.6462  | 54.4652  | 74.7714   | 16.7       | 0.21      |
| 7/2/1       | 10.0779   | 15.7916  | 50.7916  | 75.6      | 15.5       | 0.29      |
| 7/3/1       | 10.077    | 15.6163  | 52.7449  | 75.8243   | 15.5       | 0.34      |
| 7/4/1       | 10.3506   | 15.4204  | 50.7358  | 75.4446   | 16.2       | 0.25      |
| 7/5/1       | 9.997     | 14.8612  | 51.8572  | 75.0131   | 15.0       | 0.18      |
| 7/6/1       | 9.2837    | 14.9208  | 42.9346  | 75.6345   | 14.9       | 0.34      |
| 7/7/1       | 9.4773    | 15.1817  | 45.2756  | 75.5309   | 14.5       | 0.29      |
| 7/8/1       | 9.8264    | 14.6304  | 47.0299  | 75.6345   | 14.3       | 0.31      |
| 7/9/1       | 10.0808   | 14.8989  | 52.6354  | 75.6863   | 14.7       | 0.38      |
| Post-dryi   | ng        |          |          |           |            |           |
| Sample_     | ID ProtDM | Moisture | Hardness | Volume we | Protimeter | Fines     |
| 7/PD/1      | 10.1142   | 12.6951  | 54.9972  | 75.1512   | 12.6       | 0.19      |
| 7/PD/2      | 2 10.188  | 12.2785  | 53.1895  | 75.9107   | 12.3       | 0.16      |
| 7/PD/3      | 10.1358   | 11.2966  | 55.0787  | 75.9797   | 12.1       | 0.08      |
| 7/PD/4      | 10.17     | 11.6438  | 56.4639  | 75.4446   | 12.1       | 0.06      |
| 7/PD/5      | 5 9.9132  | 12.9548  | 53.7376  | 76.4112   | 12.6       | 0.16      |
| 7/PD/6      | 6 10.0002 | 12.5415  | 53.9904  | 76.2041   | 12.8       | 0.1       |
| 7/PD/7      | 9.9854    | 12.816   | 56.9494  | 75.8589   | 13         | 0.08      |
| 7/PD/8      | 9.9633    | 12.689   | 54.0645  | 76.5321   | 12.8       | 0.08      |
| 7/PD/9      | 10.0156   | 12.7542  | 57.0483  | 76.5838   | 12.7       | 0.12      |
| 7/PD/1      | 0 10.0199 | 12.529   | 56.5067  | 76.3077   | 12.3       | 0.12      |
| drying co   | mposite   |          |          |           |            |           |
| 7/PD/C      | 1 10.0612 | 12.8666  | 60.2034  | 75.8934   |            | 0.07      |
| 7/PD/C      | 2 10.1261 | 12.8866  | 62.0109  | 76.1005   |            | 0.11      |
| 7/PD/C      | 3 10.0202 | 12.8139  | 60.7121  | 76.1696   |            | 0.08      |
| 7/PD/C      | 4 10.1018 | 12.7948  | 59.51    | 75.8589   |            | 0.07      |
| 7/PD/C      | 5 10.1488 | 12.7353  | 57.9215  | 75.669    |            | 0.08      |

| Sample_ID | ProtDM                                                                                                                                                                                                                    | Moisture                                                                                                                                                                                                                                                                                                                                                                                                     | Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volume we l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Protimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fines (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8/1/1     | 12.3731                                                                                                                                                                                                                   | 20.5282                                                                                                                                                                                                                                                                                                                                                                                                      | 71.5966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67.5389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/1/2     | 12.12                                                                                                                                                                                                                     | 20.3947                                                                                                                                                                                                                                                                                                                                                                                                      | 71.2343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.4882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/2/1     | 12.2141                                                                                                                                                                                                                   | 19.992                                                                                                                                                                                                                                                                                                                                                                                                       | 70.3229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.9716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/2/2     | 12.0202                                                                                                                                                                                                                   | 19.9389                                                                                                                                                                                                                                                                                                                                                                                                      | 72.2939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.0936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/3/1     | 12.5565                                                                                                                                                                                                                   | 19.6557                                                                                                                                                                                                                                                                                                                                                                                                      | 69.9797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/3/2     | 12.2905                                                                                                                                                                                                                   | 19.5548                                                                                                                                                                                                                                                                                                                                                                                                      | 69.4347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.3882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/4/1     | 12.1882                                                                                                                                                                                                                   | 19.2253                                                                                                                                                                                                                                                                                                                                                                                                      | 66.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71.2328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/4/2     | 12.214                                                                                                                                                                                                                    | 19.4877                                                                                                                                                                                                                                                                                                                                                                                                      | 65.3202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.9566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/5/1     | 12.1874                                                                                                                                                                                                                   | 19.0261                                                                                                                                                                                                                                                                                                                                                                                                      | 66.0181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.3364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/5/2     | 11.9648                                                                                                                                                                                                                   | 19.063                                                                                                                                                                                                                                                                                                                                                                                                       | 64.4355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72.3203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/6/1     | 12.2695                                                                                                                                                                                                                   | 18.9266                                                                                                                                                                                                                                                                                                                                                                                                      | 66.3556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.6816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/6/2     | 12.1838                                                                                                                                                                                                                   | 19.0234                                                                                                                                                                                                                                                                                                                                                                                                      | 63.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72.0786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C1/1    | 12.3306                                                                                                                                                                                                                   | 19.5065                                                                                                                                                                                                                                                                                                                                                                                                      | 68.3557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C1/2    | 12.3602                                                                                                                                                                                                                   | 19.2908                                                                                                                                                                                                                                                                                                                                                                                                      | 69.8499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.5251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C1/3    | 12.2792                                                                                                                                                                                                                   | 19.7428                                                                                                                                                                                                                                                                                                                                                                                                      | 66.5924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.5596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C1/4    | 12.3151                                                                                                                                                                                                                   | 19.609                                                                                                                                                                                                                                                                                                                                                                                                       | 67.8042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C1/5    | 12.0849                                                                                                                                                                                                                   | 19.7835                                                                                                                                                                                                                                                                                                                                                                                                      | 67.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.4549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C2/1    | 12.2554                                                                                                                                                                                                                   | 19.4298                                                                                                                                                                                                                                                                                                                                                                                                      | 64.4788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.0084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C2/2    | 12.2173                                                                                                                                                                                                                   | 19.4199                                                                                                                                                                                                                                                                                                                                                                                                      | 66.0637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.0775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C2/3    | 12.1794                                                                                                                                                                                                                   | 19.3862                                                                                                                                                                                                                                                                                                                                                                                                      | 67.1659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.2662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C2/4    | 12.0004                                                                                                                                                                                                                   | 19.5872                                                                                                                                                                                                                                                                                                                                                                                                      | 64.4973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.7507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8/C2/5    | 12.029                                                                                                                                                                                                                    | 19.3528                                                                                                                                                                                                                                                                                                                                                                                                      | 65.4611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71.4572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | Sample_ID<br>8/1/1<br>8/2/2<br>8/2/1<br>8/2/2<br>8/3/1<br>8/3/2<br>8/4/1<br>8/4/2<br>8/5/1<br>8/5/2<br>8/6/1<br>8/6/2<br>8/C1/2<br>8/C1/2<br>8/C1/3<br>8/C1/4<br>8/C1/5<br>8/C2/1<br>8/C2/2<br>8/C2/3<br>8/C2/4<br>8/C2/5 | Sample_ID ProtDM<br>8/1/1 12.3731<br>8/1/2 12.12<br>8/2/1 12.2141<br>8/2/2 12.0202<br>8/3/1 12.5565<br>8/3/2 12.2905<br>8/4/1 12.1882<br>8/4/2 12.214<br>8/5/1 12.1874<br>8/5/2 11.9648<br>8/6/1 12.2695<br>8/6/2 12.1838<br>8/C1/2 12.3602<br>8/C1/2 12.3602<br>8/C1/3 12.2792<br>8/C1/4 12.3151<br>8/C1/5 12.0849<br>8/C2/1 12.2554<br>8/C2/2 12.2173<br>8/C2/3 12.1794<br>8/C2/4 12.0004<br>8/C2/5 12.029 | Sample_ID ProtDM         Moisture           8/1/1         12.3731         20.5282           8/1/2         12.12         20.3947           8/2/1         12.2141         19.992           8/2/2         12.0202         19.9389           8/3/1         12.5565         19.6557           8/3/2         12.2905         19.5548           8/4/1         12.1882         19.2253           8/4/2         12.214         19.4877           8/5/1         12.1874         19.0261           8/5/2         11.9648         19.063           8/6/1         12.2695         18.9266           8/6/2         12.1838         19.0234           8/C1/1         12.3306         19.5065           8/C1/2         12.3602         19.2908           8/C1/2         12.3602         19.2908           8/C1/2         12.3602         19.2908           8/C1/2         12.3602         19.2908           8/C1/2         12.0849         19.7835           8/C2/1         12.2554         19.4298           8/C2/2         12.2173         19.4199           8/C2/2         12.2173         19.4199           8/C2/3 </td <td>Sample_ID ProtDMMoistureHardness8/1/112.373120.528271.59668/1/212.1220.394771.23438/2/112.214119.99270.32298/2/212.020219.938972.29398/3/112.556519.655769.97978/3/212.290519.554869.43478/4/112.188219.225366.9918/4/212.21419.487765.32028/5/112.187419.026166.01818/5/211.964819.06364.43558/6/112.269518.926666.35568/6/212.183819.023463.5458/C1/112.300619.506568.35578/C1/212.360219.290869.84998/C1/312.279219.742866.59248/C1/412.315119.60967.80428/C1/512.084919.783567.7838/C2/112.255419.429864.47888/C2/212.217319.419966.06378/C2/312.179419.386267.16598/C2/412.000419.587264.49738/C2/512.02919.352865.4611</td> <td>Sample_ID ProtDMMoistureHardnessVolume we l8/1/112.373120.528271.596667.53898/1/212.1220.394771.234368.48828/2/112.214119.99270.322968.97168/2/212.020219.938972.293970.09368/3/112.556519.655769.979770.19718/3/212.290519.554869.434771.38828/4/112.188219.225366.99171.23288/4/212.21419.487765.320270.95668/5/112.187419.026166.018171.33648/5/211.964819.06364.435572.32038/6/112.269518.926666.355671.68168/6/212.183819.023463.54572.07868/C1/112.300619.506568.355770.7848/C1/212.360219.290869.849970.52518/C1/312.279219.742866.592470.55968/C1/412.315119.60967.804270.19718/C2/112.255419.429864.478871.00848/C2/212.217319.419966.063771.07758/C2/312.179419.386267.165970.26628/C2/412.000419.587264.497371.75078/C2/512.02919.352865.461171.4572</td> <td>Sample_ID ProtDMMoistureHardnessVolume we Protimeter8/1/112.373120.528271.596667.538919.88/1/212.1220.394771.234368.488220.58/2/112.214119.99270.322968.971619.78/2/212.020219.938972.293970.093619.98/3/112.556519.655769.979770.1971198/3/212.290519.554869.434771.388219.38/4/112.188219.225366.99171.232818.78/4/212.21419.487765.320270.956619.38/5/112.187419.026166.018171.336418.78/5/211.964819.06364.435572.320318.88/6/112.269518.926666.355671.681618.58/6/212.183819.023463.54572.078618.48/C1/112.300619.506568.355770.7848/C1/212.360219.290869.849970.52518/C1/312.279219.742866.592470.55968/C1/412.315119.60967.804270.19718/C2/112.255419.429864.478871.00848/C2/212.217319.419966.063771.07758/C2/312.179419.386267.165970.26628/C2/412.000419.587264.497371.75078/C2/512.02919.3528</td> | Sample_ID ProtDMMoistureHardness8/1/112.373120.528271.59668/1/212.1220.394771.23438/2/112.214119.99270.32298/2/212.020219.938972.29398/3/112.556519.655769.97978/3/212.290519.554869.43478/4/112.188219.225366.9918/4/212.21419.487765.32028/5/112.187419.026166.01818/5/211.964819.06364.43558/6/112.269518.926666.35568/6/212.183819.023463.5458/C1/112.300619.506568.35578/C1/212.360219.290869.84998/C1/312.279219.742866.59248/C1/412.315119.60967.80428/C1/512.084919.783567.7838/C2/112.255419.429864.47888/C2/212.217319.419966.06378/C2/312.179419.386267.16598/C2/412.000419.587264.49738/C2/512.02919.352865.4611 | Sample_ID ProtDMMoistureHardnessVolume we l8/1/112.373120.528271.596667.53898/1/212.1220.394771.234368.48828/2/112.214119.99270.322968.97168/2/212.020219.938972.293970.09368/3/112.556519.655769.979770.19718/3/212.290519.554869.434771.38828/4/112.188219.225366.99171.23288/4/212.21419.487765.320270.95668/5/112.187419.026166.018171.33648/5/211.964819.06364.435572.32038/6/112.269518.926666.355671.68168/6/212.183819.023463.54572.07868/C1/112.300619.506568.355770.7848/C1/212.360219.290869.849970.52518/C1/312.279219.742866.592470.55968/C1/412.315119.60967.804270.19718/C2/112.255419.429864.478871.00848/C2/212.217319.419966.063771.07758/C2/312.179419.386267.165970.26628/C2/412.000419.587264.497371.75078/C2/512.02919.352865.461171.4572 | Sample_ID ProtDMMoistureHardnessVolume we Protimeter8/1/112.373120.528271.596667.538919.88/1/212.1220.394771.234368.488220.58/2/112.214119.99270.322968.971619.78/2/212.020219.938972.293970.093619.98/3/112.556519.655769.979770.1971198/3/212.290519.554869.434771.388219.38/4/112.188219.225366.99171.232818.78/4/212.21419.487765.320270.956619.38/5/112.187419.026166.018171.336418.78/5/211.964819.06364.435572.320318.88/6/112.269518.926666.355671.681618.58/6/212.183819.023463.54572.078618.48/C1/112.300619.506568.355770.7848/C1/212.360219.290869.849970.52518/C1/312.279219.742866.592470.55968/C1/412.315119.60967.804270.19718/C2/112.255419.429864.478871.00848/C2/212.217319.419966.063771.07758/C2/312.179419.386267.165970.26628/C2/412.000419.587264.497371.75078/C2/512.02919.3528 |

Yellow cells are composite values

(In black and white version, read 'shaded' for 'yellow')

| Farm 8A Wheat Molucca  |             |         |          |          |              |           |           |
|------------------------|-------------|---------|----------|----------|--------------|-----------|-----------|
| Instrument Application | Sample_ID F | ProtDM  | Moisture | Hardness | Volume we Pr | rotimeter | Fines (%) |
| 12411675 WH101060      | 8A/1/1      | 12.9316 | 18.4837  | 68.4282  | 65.6574      | 17.9      | 0.03      |
| 12411675 WH101060      | 8A/1/2      | 13.1196 | 18.3005  | 65.0902  | 67.1591      | 17.9      | 0.07      |
| 12411675 WH101060      | 8A/2/1      | 13.0741 | 18.304   | 63.1681  | 65.9681      | 17.4      | 0.05      |
| 12411675 WH101060      | 8A/2/2      | 12.966  | 18.086   | 63.0415  | 66.4687      | 17.7      | 0.05      |
| 12411675 WH101060      | 8A/3/1      | 13.2615 | 17.96    | 66.4028  | 66.4859      | 17.7      | 0.02      |
| 12411675 WH101060      | 8A/3/2      | 13.4876 | 17.8967  | 64.8668  | 67.2627      | 17.5      | 0.04      |
| 12411675 WH101060      | 8A/4/1      | 13.5121 | 17.9091  | 65.8474  | 65.8818      | 17.4      | 0.02      |
| 12411675 WH101060      | 8A/4/2      | 12.9395 | 17.869   | 63.2578  | 66.9002      | 17.4      | 0.03      |
| 12411675 WH101060      | 8A/5/1      | 13.2723 | 17.8911  | 62.3777  | 65.433       | 17.2      | 0.03      |
| 12411675 WH101060      | 8A/5/2      | 13.0944 | 17.8981  | 61.882   | 66.7103      | 17.4      | 0.05      |
| 12411675 WH101060      | 8A/6/1      | 13.3828 | 17.7715  | 63.3691  | 65.3639      | 16.9      | 0.02      |
| 12411675 WH101060      | 8A/6/2      | 13.2395 | 17.7735  | 64.0022  | 66.0371      | 17.1      | 0.05      |
| 12411675 WH101060      | 8A/C1/1     | 13.302  | 17.9103  | 64.3402  | 66.6585      |           | 0.03      |
| 12411675 WH101060      | 8A/C1/2     | 13.2551 | 17.9087  | 61.2099  | 66.5377      |           | 0.04      |
| 12411675 WH101060      | 8A/C1/3     | 13.1921 | 17.8697  | 61.7677  | 66.3996      |           | 0.03      |
| 12411675 WH101060      | 8A/C1/4     | 13.1248 | 17.9781  | 60.9649  | 66.4687      |           | 0.06      |
| 12411675 WH101060      | 8A/C1/5     | 13.1571 | 17.949   | 62.2459  | 66.8484      |           | 0.03      |
| 12411675 WH101060      | 8A/C2/1     | 13.2057 | 17.921   | 64.8051  | 67.1764      |           | 0.02      |
| 12411675 WH101060      | 8A/C2/2     | 13.1863 | 17.9881  | 63.1455  | 66.8139      |           | 0.03      |
| 12411675 WH101060      | 8A/C2/3     | 13.1911 | 17.9258  | 63.2863  | 66.7794      |           | 0.04      |
| 12411675 WH101060      | 8A/C2/4     | 13.0805 | 17.939   | 62.9012  | 66.2788      |           | 0.01      |
| 12411675 WH101060      | 8A/C2/5     | 13.1855 | 17.91    | 62.4599  | 66.8484      |           | 0.02      |

Yellow cells are composite values (In black and white version, read 'shaded' for 'yellow')

| Farm 9 + 9a Barley Optic(?) |        |          |                 |      |  |  |
|-----------------------------|--------|----------|-----------------|------|--|--|
| Sample_ID Nitr              | .DM    | Moisture | Volume we Fines |      |  |  |
| 9/1/1                       | 1.8982 | 18.2265  | 57.7286         | 0.17 |  |  |
| 9/1/2                       | 1.8239 | 18.193   | 58.139          | 0.21 |  |  |
| 9/1/3                       | 1.8533 | 18.3292  | 57.9427         | 0.21 |  |  |
| 9/1/4                       | 1.872  | 18.462   | 58.496          | 0.16 |  |  |
| 9/1/5                       | 1.8579 | 18.6934  | 58.4781         | 0.19 |  |  |
| 9/1/6                       | 1.8742 | 18.657   | 57.7286         | 0.18 |  |  |
| 9/1/7                       | 1.8344 | 18.5854  | 57.7107         | 0.15 |  |  |
| 9/1/8                       | 1.9076 | 18.7188  | 56.9254         | 0.24 |  |  |
| 9/1/10                      | 1.8489 | 18.4513  | 58.0498         |      |  |  |
| 9/1/11                      | 1.8024 | 18.2134  | 58.496          | 0.11 |  |  |
| 9/1/12                      | 1.8422 | 18.8428  | 58.0677         | 0.15 |  |  |
| 9/1/13                      | 1.8676 | 18.6592  | 58.1569         | 0.15 |  |  |
| 9/1/14                      | 1.8358 | 18.7141  | 58.4246         | 0.21 |  |  |
| 9/1/15                      | 1.8918 | 18.7087  | 58.6566         | 0.22 |  |  |
| 9/1/16                      | 1.8642 | 18.9928  | 58.3354         | 0.1  |  |  |
| 9/1/17                      | 1.88   | 18.3717  | 58.5495         | 0.35 |  |  |
| 9/1/18                      | 1.8821 | 18.3092  | 58.6388         | 0.24 |  |  |
| 9/1/19                      | 1.8355 | 18.3678  | 58.3889         | 0.7  |  |  |
| 9/1/20                      | 1.8808 | 18.6138  | 58.8708         | 0.22 |  |  |
| Post drying                 |        |          |                 |      |  |  |
| ΩΔ/1/1                      | 1 8785 | 15 0155  | 60 6376         | 0.06 |  |  |
| 9A/1/1<br>QΔ/1/2            | 1 8634 | 15 6428  | 60.8161         | 0.00 |  |  |
| 9Δ/1/2<br>9Δ/1/3            | 1 845  | 15 7183  | 61 3694         | 0.00 |  |  |
| 9A/1/4                      | 1 7915 | 15 5295  | 61 6192         | 0.00 |  |  |
| 9A/1/5                      | 1.8449 | 15.4642  | 60.834          | 0.05 |  |  |
| 9A/1/6                      | 1.8388 | 15.6364  | 61.0838         | 0.06 |  |  |
| 9A/1/7                      | 1.8056 | 15.6376  | 61.1731         | 0.05 |  |  |
| 9A/1/8                      | 1.8112 | 15.8152  | 61.5835         | 0.03 |  |  |
| 9A/1/9                      | 1.8521 | 15.687   | 61.1374         | 0.05 |  |  |
| 9A/1/10                     | 1.8521 | 16.0578  | 61.887          | 0.03 |  |  |
| 9A/1/11                     | 1.8672 | 15.4514  | 61.7442         | 0.03 |  |  |
| 9A/1/12                     | 1.7974 | 16.0556  | 61.7085         | 0.03 |  |  |
| 9A/1/13                     | 1.8433 | 15.4682  | 61.4229         | 0.04 |  |  |
| 9A/1/14                     | 1.862  | 15.4545  | 61.53           | 0.03 |  |  |
| 9A/1/15                     | 1.895  | 15.6029  | 61.3158         | 0.06 |  |  |
| 9A/1/16                     | 1.8761 | 15.2318  | 61.298          | 0.05 |  |  |
| 9A/1/17                     | 1.8792 | 15.6514  | 61.5657         | 0.03 |  |  |
| 9A/1/18                     | 1.8389 | 15.4015  | 61.6371         | 0.04 |  |  |
| 9A/1/19                     | 1.7855 | 15.9967  | 61.4586         | 0.05 |  |  |
| 9A/1/20                     | 1.8637 | 15.8773  | 61.4765         | 0.04 |  |  |
|                             |        |          |                 |      |  |  |

| Farm 10 + 10 | a Wheat |          |          |                 |      |
|--------------|---------|----------|----------|-----------------|------|
| Sample_ID Pi | rotDM   | Moisture | Hardness | Volume we Fines |      |
| 10/1/1       | 13.23   | 21.1383  | 87.8905  | 63.4997         | 0.05 |
| 10/1/2       | 13.5278 | 21.0671  | 88.6649  | 63.8794         | 0.07 |
| 10/1/3       | 13.3898 | 21.1083  | 87.9979  | 63.6378         | 0.11 |
| 10/1/4       | 13.1586 | 21.0637  | 86.6975  | 63.7413         | 0.1  |
| 10/1/5       | 13.1564 | 21.1204  | 87.9244  | 63.9312         | 0.08 |
| 10/1/6       | 13.4457 | 21.1472  | 86.674   | 64.0348         | 0.06 |
| 10/1/7       | 13.3664 | 21.1242  | 90.5082  | 63.3271         | 0.07 |
| 10/1/8       | 13.242  | 21.0705  | 84.711   | 64.1038         | 0.08 |
| 10/1/9       | 13.2011 | 21.0937  | 85.7168  | 63.7068         | 0.07 |
| 10/1/10      | 13.3971 | 21.1081  | 87.1146  | 63.4652         | 0.07 |
| 10/1/11      | 13.2367 | 21.0925  | 86.8362  | 63.6205         | 0.07 |
| 10/1/12      | 13.282  | 21.0981  | 86.7309  | 64.3628         | 0.06 |
| 10/1/13      | 13.181  | 21.0628  | 87.7105  | 64.2074         | 0.11 |
| 10/1/14      | 13.2867 | 21.1058  | 89.1731  | 64.8806         | 0.07 |
| 10/1/15      | 13.2414 | 21.1335  | 86.0329  | 64.3973         | 0.08 |
| 10/1/16      | 13.2044 | 21.0714  | 86.4586  | 64.7425         | 0.08 |
| 10/1/17      | 13.1476 | 21.128   | 85.0799  | 64.2592         | 0.07 |
| 10/1/18      | 13.0718 | 21.0274  | 85.6008  | 64.7598         | 0.07 |
| 10/1/19      | 13.1273 | 21.0556  | 83.1649  | 64.2592         | 0.09 |
| 10/1/20      | 13.3547 | 21.1308  | 86.9778  | 64.4836         | 0.07 |
| 10/1/21      | 13.2397 | 21.1566  | 85.5748  | 64.5354         | 0.09 |
| 10/1/22      | 13.3192 | 21.1684  | 87.2689  | 65.105          | 0.03 |
| 10/1/23      | 13.1818 | 21.0975  | 87.0443  | 64.7943         | 0.08 |
| 10/1/24      | 13.4448 | 21.1595  | 86.479   | 62.5503         | 0.08 |
| 10/1/25      | 13.4138 | 21.1064  | 86.9056  | 64.6735         | 0.1  |
| Post Drying  |         |          |          |                 |      |
| 10A/1/1      | 12.4614 | 13.8513  | 71.4932  | 69.9727         | 0.06 |
| 10A/1/2      | 12.5531 | 13.7121  | 70.0305  | 69.4031         | 0.06 |
| 10A/1/3      | 12.5427 | 13.6604  | 69.3474  | 56.7332         | 0.03 |
| 10A/1/4      | 12.4701 | 13.9311  | 71.4139  | 69.4549         | 0.05 |
| 10A/1/5      | 12.7403 | 13.373   | 72.7642  | 67.6942         | 0.06 |
| 10A/1/6      | 12.4741 | 13.791   | 71.2238  | 68.4192         | 0.09 |
| 10A/1/7      | 12.5314 | 14.1168  | 68.5198  | 69.99           | 0.06 |
| 10A/1/8      | 12.7558 | 13.4327  | 70.1558  | 67.1936         | 0.09 |
| 10A/1/9      | 12.5734 | 13.6525  | 70.1283  | 68.5918         | 0.05 |
| 10A/1/10     | 12.6525 | 13.9249  | 73.698   | 67.9704         | 0.07 |
| 10A/1/11     | 12.606  | 13.6219  | 71.4263  | 68.2466         | 0.08 |
| 10A/1/13     | 12.991  | 13.2451  | 71.3676  | 67.0555         | 0.05 |
| 10A/1/14     | 12.5287 | 13.8001  | 71.8639  | 67.6424         | 0.07 |
| 10A/1/15     | 12.9516 | 13.4195  | 70.7491  | 67.6079         | 0.06 |
| 10A/1/16     | 12.6919 | 13.8496  | 70.6102  | 67.1591         | 0.05 |
| 10A/1/17     | 13.1168 | 13.4133  | 73.5844  | 66.2788         | 0.06 |
| 10A/1/18     | 12.8628 | 13.7436  | 72.4783  | 68.5745         | 0.09 |
| 10A/1/19     | 13.1625 | 13.5396  | 71.2913  | 68.0567         | 0.06 |
| 10A/1/20     | 13.1241 | 13.9117  | 73.4146  | 67.5734         | 0.06 |
| 10A/1/21     | 12.961  | 13.4433  | 71.4847  | 67.2454         | 0.05 |
| 10A/1/22     | 12.9922 | 13.6946  | 72.2331  | 68.4537         | 0.1  |
| 10A/1/23     | 13.3523 | 13.645   | 71.423   | 67.677          | 0.07 |
| 10A/1/24     | 13.3488 | 14.0738  | 72.5352  | 67.4526         | 0.1  |
| 10A/1/25     | 13.1599 | 13.4291  | 71.684   | 68.6263         | 0.06 |
| 10A/1/26     | 13.3434 | 13,9999  | 72.3372  | 69.0061         | 0.12 |